
Emotional Code

Dylan Lederle-Ensign

11/22/12

CODE2012: Swinburne University of Technology

In this paper I analyze the source code of Gravitation, an art game by Jason

Rohrer. This analysis is rooted in Ian Bogost's concept of procedural

rhetoric, and utilizes techniques from Critical Code Studies. I'll briefly go

over those two ideas, and look at some other code-based critiques of games

before diving in to Gravitation. Finally, I'll reflect on what studying the

code of a game can clarify about the game's design.

Video Game Layers and Procedural

Rhetoric

In his 2005 article Combat in Context, Nick Montfort introduces a five

layer conceptual model for thinking about video games. He defines the five

layers, in order, as:

Platform•

Game Code•

Game Form•

Interface•

Reception and Operation•

1

http://gamestudies.org/0601/articles/montfort

Platform is the underlying software and hardware system that the game

runs on, such as a Windows PC, an X-box or an Atari. Game Code is "the

computer program that realizes a game" (Montfort, 2006). Game Form

corresponds to the game's rules or procedures. Interface, "sits between the

player and the game form" (ibid.). Reception and Operation is the level

the player experiences the game at and forms their interpretations of the

game as a work of literature. Surrounding the entire stack, and influencing

every layer, is the cultural context.

In Bogost's Procedural Rhetoric, he proposes that the processes of the

game allow the game's author to make arguments and change the way

players think and feel about the world. In How to do Things with

Videogames he discusses a type of designer that he characterizes as

"proceduralist", who are concerned with consciously aligning the

mechanics of the game with their intended theme. His examples of

proceduralist designers include Jon Blow, of Braid fame, Rod Humble,

who was involved in The Sims and The Marriage and Jason Rohrer.

As a programmer, untangling and understanding other people's code is a

useful exercise for learning new techniques, but as a literary scholar

studying video games, reading code allows for crystal clear explanation of

rules which are often difficult to describe in natural language. If the rules

2

are the most important part of a game, and the code forms the rules, then

the code is a worthwhile object of study.

Critical Code Studies

In Mark Marino's definition of Critical Code Studies, he proposes "that

code itself is a cultural text worthy of analysis and rich with possibilities for

interpretation" (2006). I'm not entirely sure I agree with that. As was

mentioned yesterday, not all code is fun. Most is fairly dry, industrial, and

boring. However, Marino highlights the dual nature of code as both a

computational object, in this case a functioning video game, and as a

human readable text. The extra-functional characteristics of code that

fascinate Marino are potentially useful in studying games.

In software engineering, it is considered best practice to leave comments

for other users of confusing pieces of code, most often yourself in the

future. Comments surround functional pieces of code, specially designated

for the computer to ignore at compile and run time. In good software,

comments should concisely explain what is going on in a confusing bit of

code. Descriptively naming variables is also an important way to clarify

their purpose. The values of the variables are important for the proper

3

functioning of the program; however the computer does not care what

designation is chosen for them, so long as it is distinct from other variables.

Choosing variable names that describe what they represent matters only to

clarify their purpose for human readers of the code. Sometimes, just a few

words is all it takes.

Mark Sample describes the controversy that erupted when a variable was

discovered in the commercial game Dead Island (Techland, 2011) named

"FeministWhore" (Sample, 2011). People were, rightfully, offended by this,

and the studio took appropriate steps to discipline the coder responsible.

Variable names, particularly such provocatively named ones, are within the

purview of Code Studies. They contribute to the rich textuality of code and,

because they are not bound by programming language specific reserved

words, are a way for coders to establish voice and style.

However, as Sample points out, this code was found in a "leftover debug

file" (ibid. quoting a statement from Techland). He labels it "Zombie

Code," code which was supposed to be deleted, does not form any

processes in the work, and yet has been given new life. This is what Wm.

Ruffin Bailey has called "fossil" code (Bailey, 2008), deleted or

uncompiled portions of the software which nevertheless have been

discovered.

4

This is a case where the distinction between the human legible code and the

computational object is brought under scrutiny. Does the code only matter

in execution? Does the textuality of the source code matter at all in relation

to the computational object, which is ultimately a series of high and low

voltages in hardware. These are the questions of the entire conference, and I

think that there are compelling arguments to both sides. For this study at

least, I believe the code forms the game, and is inseperable from it.

Gravitation

Jason Rohrer describes his Gravitation as "a video game about mania,

melancholia, and the creative process". In Newsgames it is provided as an

example of a "human interest" game, commenting on games' "ability to

reconstruct personal emotional experiences rather than just describing

them" (Bogost et al, 2010). The game explores Rohrer's cycles of creative

mania, and places the player in the position of balancing "abstract, difficult

work, and its interplay with the inspiration that comes from family

interaction" (ibid.).

The game opens with your character in a small box of visibility tinged with

gray, the rest of the screen obscured by blackness. To the right of the screen

5

http://hcsoftware.sourceforge.net/gravitation/

is a furnace, and moving to the left reveals a small child avatar who begins

throwing a red ball to you. If you bat the ball back, a heart appears over the

child's head, but if you don't and the ball hits the ground, tears sprout from

the child. As you play ball, the visible box grows larger, and the area within

becomes more colorful and brightly lit. This is a simple, powerful ludic

metaphor for depression, its antidote being human interaction with loved

ones.

At a certain point, when your "mood" raises high enough more of the world

is revealed, your head appears to catch fire and you can jump incredible

distances. Jumping above your starting level reveals stars, which fall

downwards when touched. Your "mania" only lasts a short time, after

which your view closes up and the colors darken again. Unable to jump

higher, you navigate your way down to the original level, where the stars

have become blocks of ice with point values. The points start at 9 and count

slowly downwards. Pushing the blocks of ice into the furnace on the right

of the screen adds their current point value to your total. The child

continues to throw the ball when you return, though the piles of ice can cut

you off from him until they are cleared off. Initially, straining against your

arrow keys can feel difficult as the ice moves slowly towards the fire.

Playing ball with the child increases your mood, and if you re-enter mania

ice piles can be cleared more quickly.

6

There are several additional aspects that make Gravitation an interesting

work of literature. Firstly, while playing with the child can increase your

mood, it does not increase your point total. It is possible to play through the

entire game just batting the ball around, but your score will remain 000.

You also do not receive points for harvesting the stars, only for pushing the

blocks of ice into the furnace. While you have spurts of depression when

you are exploring the space above the ground level, they can be waited out

and your mania will return. You can continue to explore the heights of pure

creativity above for the entire game, but without the difficult work of

pushing those ideas into the furnace, your score remains 000.

This constant returning to the home level makes Gravitation feel like a

balancing act, enforcing the work-life balance theme that is at its core.

Gravitation's most moving portion comes towards the end of the game. At a

certain point, while you are collecting stars above, the child leaves. You

return home to find the ball sitting alone on the ground. Mechanically, the

game continues unchanged, but the emotional tenor shifts drastically.

Collecting your stars begins to feel empty.

One of the key components of the game's atmosphere is the music, which

keeps pace with the shifting mood. In the beginning of the game, the music

is slow and mournful. As your mania increases, the initial music becomes

7

overlaid with other tracks, which fade out again as your mood darkens. The

volume and tempo increases and the music becomes discordant as your

mood intensifies.

Rather than a typical audio type like .ogg or .mp3, the game's music is

encoded in a .tga file, an extension most typically used for image files. In

fact, if you open the file with an image viewer, it reveals waves that appear

to represent six different musical tracks.

The thicker white horizontal lines delimit the different tracks. The first

track has long yellow lines that correspond to the slow, low brass sounding

initial track. The second track has small red dots, that sound like a

xylophone. The third green track is the initial melody. The next three tracks

are activated during mania, and its build up. The two tracks with many

small dots spaced at regular close intervals to each other appear to be the

game's drum tracks. The last track has yellow dots which only play during

the height of mania, and provide a rapid, high pitched counterpoint to the

initial melody.

8

Investigating the musicPlayer.cpp file (lines 17-20) reveals that the music

changes based on the game state:

// smoothly fade in particular tracks based on player emotion

 // low emotion plays only first track... high emotion plays all tracks

 extern double playerEmotion;

Rohrer's comment (delimited by the double slash marks) precedes the

floating point variable "playerEmotion", which represents the avatar's

emotional state. It operates on a scale with 0 being total melancholia and 1

being total mania. It is used later (lines 233-236) as a multiplier for fading

tracks in and out.

// factor in player emotion

 // level from 0..(numTimbres-1)

 double trackFadeInLevel = playerEmotion * (numTimbres-1);

Music is not the only place the playerEmotion variable comes into play. It

is initially set in game.cpp (lines 536-538) with comments to explain its

usage:

// 1 = manic

9

 // 0 = depressed

 double playerEmotion = 0.4;

Several lines later Rohrer defines another variable:

double defaultDeltaPlayerEmotion = -0.0010;

 double deltaPlayerEmotion = defaultDeltaPlayerEmotion;

The second variable, deltaPlayerEmotion, is the rate at which player

emotion changes each frame of the game, and is initialized to -0.0010,

meaning that you begin the game on a downswing. In the next few lines

Rohrer defines several upswing variables that provide a "natural depression

recovery" (line 548). These variables provide a snapshot of the fairly

simple system Rohrer uses to model human manic depressive cycles. It

affects everything, from the music to the size and color of the visible world.

In this code Rohrer is treating the "playerEmotion" to be state of the game

player's avatar, not the player themselves, which would be much more

difficult to assess. However, the discordant music will affect the human

player's mood. By tying the visual and auditory representation of the world

to the avatar's emotional state, Rohrer can change the human player's mood.

Even the mechanical changes, such as increased strength and jumping

10

ability serve to make the player feel powerful during mania and weak

during depression.

Playing ball with Mez increases the playerEmotion variable, by 0.15:

if(mezCaughtBall) {

 playerEmotionSmoothTransitionTarget = playerEmotion + 0.15;

playerEmotionSmoothTransitionTarget gives the point that playerEmotion

is aiming for, but Rohrer slows the transition for a less abrupt jump

upwards. In a separate World.cpp file I found the portion of the code that

explains the way touching stars, or prizes as Rohrer calls them, changes

your emotional state. From within a function named touchPrize (line

1374-1378):

// renew mania

 playerEmotionSmoothTransitionTarget = 1.0;

 // accellerated descent toward depression

 deltaPlayerEmotion *= 2;

The first non-comment line resets your current emotional target back to full

mania, while the second line of code doubles your rate of descent. It results

in the sometimes wild swings of emotion that can be experienced while

11

searching for stars. This is one of the most fascinating portions of the code,

as it reveals something new that I was unaware of from playing the game

alone. It was apparent that touching prizes had some effect on your

emotion, but I was unaware of the doubled descent into depression. This

rule has some fascinating implications for interpreting the game. Collecting

the prizes is actually a faster way to gain mania, but note that the

accelerated descent is a multiplier not a fixed value. Collecting multiple

prizes in a row would result in an exponential increase in your downswing.

This is in contrast to the slower mania building of playing ball which has

no such emotionally turbulent side effects.

game.cpp also contains the code controlling the child's disappearance (lines

1406-1414):

// last 3/8 of game

 if(timeLeft <= 0.375 * totalTime) {

 // mez "sneaks" away if he's off screen near the end of the game

 if(! isMezOnScreen()) {

 hideMez();

 }

 }

12

Several things are happening in this code. The first line is a comment

explaining that the second line determines how much time is left in the

game as a ratio to the total time of the game. As the next comment explains,

after that point, any time the child is off screen he will leave. The

isMezOnScreen() function returns Mez' location on screen. A null value,

meaning Mez is offscreen, will be interpreted as false by the if statement.

The exclamation point can be read as "not", so the entire line checks if Mez

is being displayed, and if not, moves to the body of the if statement, hiding

Mez.

In some ways seeing it in code is anticlimactic. It clarifies some things

about the game. The child is a boy named Mez, after Rohrer's son. His

disappearance is nearly inevitable, unless you spend the entire last 3/8 of

the game with him. Furthermore, there is no chance of Mez remaining if

you leave.

When explained in clear code, this portion of Gravitation can be read as an

exploration of the parental impulse to "helicopter parent". On the one hand,

doing so prevents the child from moving on to a fruitful adulthood, but in

Gravitation you cannot watch Mez grow up. A boolean true/false value

gives you no middle ground.

13

My professor Zach Whalen presented a conference paper on Gravitation

and its source code around the same time I started looking at it. I wasn't at

the conference, but from conversations with him, we drew quite different

conclusions. His thesis was that the code was another interpretive text

about the game, one that offered Rohrer's interpretation. The specific

naming of Mez, the male pronoun, the manipulation of playerEmotion are

just Rohrer's interpretation. This is in contrast to the lo-fi, abstract graphics

of the game, which provide space for the player to imprint their own

experiences on the game.

Conclusion

Studying the human legible code clarifies the workings of the game and

opens up interpretations that were not possible before. Speaking with

precision about game design and play experience can become a little bit

like "dancing about architecture". Typically we describe one play session,

which is just one possible permutation of the game. Exploring the code

grants us insight into the actual, hard rules, which create the game.

Of course, this is not always possible or fruitful. Most commercial games

are not open source, and most game designers are not working in the

14

proceduralist styles. As we discussed yesterday, the most interesting part of

MMO games such as Eve Online is rarely the computer code, it is the social

code that surrounds the game.

In conclusion, sometimes reading the code works, and sometimes it just

doesn't.

15

	draft.html

